
A Bayesian Analysis of Dynamics in Free Recall

Richard Socher
Department of Computer Science

Stanford University
Stanford, CA 94305

richard@socher.org

Samuel J. Gershman, Adler J. Perotte, Per B. Sederberg
Department of Psychology

Princeton University
Princeton, NJ 08540

{sjgershm,aperotte,persed}@princeton.edu

David M. Blei
Department of Computer Science

Princeton University
Princeton, NJ 08540

blei@cs.princeton.edu

Kenneth A. Norman
Department of Psychology

Princeton University
Princeton, NJ 08540

knorman@princeton.edu

Abstract

We develop a probabilistic model of human memory performance in free recall
experiments. In these experiments, a subject first studies a list of words and then
tries to recall them. To model these data, we draw on both previous psychological
research and statistical topic models of text documents. We assume that memories
are formed by assimilating the semantic meaning of studied words (represented
as a distribution over topics) into a slowly changing latent context (represented
in the same space). During recall, this context is reinstated and used as a cue for
retrieving studied words. By conceptualizing memory retrieval as a dynamic latent
variable model, we are able to use Bayesian inference to represent uncertainty and
reason about the cognitive processes underlying memory. We present a particle
filter algorithm for performing approximate posterior inference, and evaluate our
model on the prediction of recalled words in experimental data. By specifying the
model hierarchically, we are also able to capture inter-subject variability.

1 Introduction

Modern computational models of verbal memory assume that the recall of items is shaped by their
semantic representations. The precise nature of this relationship is an open question. To address
it, recent research has used information from diverse sources, such as behavioral data [14], brain
imaging [13] and text corpora [8]. However, a principled framework for integrating these different
types of information is lacking. To this end, we develop a model of human memory that encodes
probabilistic dependencies between multiple information sources and the hidden variables that couple
them. Our model lets us combine multiple sources of information and multiple related memory
experiments.

Our model builds on the Temporal Context Model (TCM) of [10, 16]. TCM was developed to explain
the temporal structure of human behavior in free recall experiments, where subjects are presented
with lists of words (presented one at a time) and then asked to recall them in any order. TCM posits a
slowly changing mental context vector whose evolution is driven by lexical input. At study, words
are bound to context states through learning; during recall, context information is used as a cue
to probe for stored words. TCM can account for numerous regularities in free recall data, most
prominently the finding that subjects tend to consecutively recall items that were studied close in
time to one another. (This effect is called the temporal contiguity effect.) TCM explains this effect
by positing that recalling an item also triggers recall of the context state that was present when the
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item was studied; subjects can use this retrieved context state to access items that were studied close
in time to the just-recalled item. The fact that temporal contiguity effects in TCM are mediated
indirectly (via item-context associations) rather than directly (via item-item associations) implies that
temporal contiguity effects should persist when subjects are prevented from forming direct item-item
associations; for evidence consistent with this prediction, see [9].

Importantly, temporal structure is not the only organizing principle in free recall data: Semantic
relatedness between items also influences the probability of recalling them consecutively [11].
Moreover, subjects often recall semantically-related items that were not presented at study. (These are
called extra-list intrusions; see [15].) To capture this semantic structure, we will draw on probabilistic
topic models of text documents, specifically latent Dirichlet allocation (LDA) [3]. LDA is an
unsupervised model of document collections that represents the meaning of documents in terms of
a small number of “topics,” each of which is a distribution over words. When fit to a corpus, the
most probable words of these distributions tend to represent the semantic themes (like “sports” or
“chemistry”) that permeate the collection. LDA has been used successfully as a psychological model
of semantic representation [7].

We model free recall data by combining the underlying assumptions of TCM with the latent semantic
space provided by LDA. Specifically, we reinterpret TCM as a dynamic latent variable model where
the mental context vector specifies a distribution over topics. In other words, the human memory
component of our model represents the drifting mental context as a sequence of mixtures of topics, in
the same way that LDA represents documents. With this representation, the dynamics of the mental
context are determined by two factors: the posterior probability over topics given a studied or recalled
word (semantic inference) and the retrieval of previous contexts (episodic retrieval). These dynamics
let us capture both the episodic and semantic structure of human verbal memory.

The work described here goes beyond prior TCM modeling work in two ways: First, our approach
allows us to infer the trajectory of the context vector over time, which (in turn) allows us to predict
the item-by-item sequence of word recalls; by contrast, previous work (e.g., [10, 16]) has focused
on fitting the summary statistics of the data. Second, we model inter-subject variability using a
hierarchical model specification; this approach allows us to capture both common and idiosyncratic
features of the behavioral data.

The rest of the paper is organized as follows. In Section 2 we describe LDA and in Section 3 we
describe our model, which we refer to as LDA-TCM. In Section 4 we describe a particle filter for
performing posterior inference in this model. In Section 5.1 we present simulation results showing
how this model reproduces fundamental behavioral effects in free recall experiments. In Section
5.2 we present inference results for a dataset collected by Sederberg and Norman in which subjects
performed free recall of words.

2 Latent Dirichlet allocation

Our model builds on probabilistic topic models, specifically latent Dirichlet allocation. Latent
Dirichlet allocation (LDA) is a probabilistic model of document collections [3]. LDA posits a set
of K topics, each of which is a distribution over a fixed vocabulary, and documents are represented
as mixtures over these topics. Thus, each word is assumed to be drawn from a mixture model with
corpus-wide components (i.e., the topics) and document-specific mixture proportions. When fit to a
collection of documents, the topic distributions often reflect the themes that permeate the document
collection.

More formally, assume that there are K topics βk, each of which is a distribution over words. (We
will call the K ×W matrix β the word distribution matrix.) For each document, LDA assumes the
following generative process:

1. Choose topic proportions θ ∼ Dir(α).

2. For each of the N words wn:

(a) Choose a topic assignment zn ∼ Mult(θ).
(b) Choose a word wn ∼ Mult(βzn).
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Figure 1: A graphical model of LDA-TCM.

Given a collection of documents, posterior inference in LDA essentially reverses this process to
decompose the corpus according to its topics and find the corresponding distributions over words.
Posterior inference is intractable, but many approximation algorithms have been developed [3, 7, 17].

In addition to capturing the semantic content of documents, recent psychological work has shown
that several aspects of LDA make it attractive as a model of human semantic representation [7]. In
our model of memory, the topic proportions θ play the role of a “mental context” that guides memory
retrieval by parameterizing a distribution over words to recall.

3 Temporal context and memory

We now turn to a model of human memory that uses the latent representation of LDA to capture the
semantic aspects of recall experiments. Our data consist of two types of observations: a corpus of
documents from which we have obtained the word distribution matrix, 1 and behavioral data from
free recall experiments, which are studied and recalled words from multiple subjects over multiple
runs of the experiment. Our goal is to model the psychological process of recall in terms of a drifting
mental context.

The human memory component of our model is based on the Temporal Context Model (TCM). There
are two core principles of TCM: (1) Memory retrieval involves reinstating a representation of context
that was active at the time of study; and (2) context change is driven by features of the studied stimuli
[10, 16, 14]. We capture these principles by representing the mental context drift of each subject
with a trajectory of latent variables θn. Our use of the same variable name (θ) and dimensionality
for the context vector and for topics reflects our key assertion: Context and topics reside in the same
meaning space.

The relationship between context and topics is specified in the generative process of the free recall
data. The generative process encompasses both the study phase and the recall phase of the memory
experiment. During study, the model specifies the distribution of the trajectory of internal mental
contexts of the subject. (These variables are important in the next phase when recalling words
episodically.) First, the initial mental context is drawn from a Gaussian:

θs,0 ∼ N (0, σI), (1)

where s denotes the study phase and I is a K ×K identity matrix.2 Then, for each studied word the
mental context drifts according to

θs,n ∼ N (hs,n, σI), (2)

where

hs,n = η1θs,n−1 + (1− η1) log(p̃s,n). (3)

1For simplicity, we fix the word distribution matrix to one fit using the method of [3]. In future work, we will
explore how the data from the free recall experiment could be used to constrain estimates of the word distribution
matrix.

2More precisely, context vectors are log-transformed topic vectors (see [1, 2]). When generating words from
the topics, we renormalize the context vector.
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This equation identifies the two pulls on mental context drift when the subject is studying words: the
previous context vector θn−1 and p̃s,n ∝ β·,ws,n

, the posterior probabilities of each topic given the
current word and the topic distribution matrix. This second term captures the idea that mental context
is updated with the meaning of the current word (see also [2] for a related treatment of topic dynamics
in the context of text modeling). For example, if the studied word is “stocks” then the mental context
might drift toward topics that also have words like “business”, “financial”, and “market” with high
probability. (Note that this is where the topic model and memory model are coupled.) The parameter
η1 controls the rate of drift, while σ controls its noisiness.

During recall, the model specifies a distribution over drifting contexts and recalled words. For each
time t, the recalled word is assumed to be generated from a mixture of two components. Effectively,
there are two “paths” to recalling a word: a semantic path and an episodic path.

The semantic path recalls words by “free associating” according to the LDA generative process:
Using the current context as a distribution over topics, it draws a topic randomly and then draws a
word from this topic (this is akin to thinking of a word that is similar in meaning to just-recalled
words). Formally, the probability of recalling a word via the semantic path is expressed as the
marginal probability of that word induced by the current context:

Ps(w) = π(θr,t) · β·,w, (4)

where π is a function that maps real-valued vectors onto the simplex (i.e., positive vectors that sum to
one) and the index r denotes the recall phase.

The episodic path recalls words by drawing them exclusively from the set of studied words. This path
puts a high probability on words that were studied in a context that resembles the current context
(this is akin to remembering words that you studied when you were thinking about things similar to
what you are currently thinking about). Formally, the episodic distribution over words is expressed as
a weighted sum of delta functions (each corresponding to a word distribution that puts all its mass on
a single studied word), where the weight for a particular study word is determined by the similarity
of the context at recall to the state of context when the word was studied:

Pe(w) =
ut,w∑
i ut,i

, (5)

where

ut =
∑N
n=1 δs,ws,n

/d(π(θr,t), π(θs,n))ε.

Here d(·, ·) is a similarity function between distributions (here we use the negative KL-divergence)
and ε is a parameter controlling the curvature of the similarity function. We define {δs,ws,n}Nn=1 to
be delta functions defined at study words. Because people tend not to repeatedly recall words, we
remove the corresponding delta function after a word is recalled.

Our model assumes that humans use some mixture of these two paths, determined by mixing
proportion λ. Letting wr,t ∼ Mult(φt), we have

φt(w) = λPs(w) + (1− λ)Pe(w). (6)

Intuitively, λ in Equation 6 controls the balance between semantic influences and episodic influences.
When λ approaches 1, we obtain a “pure semantic” model wherein words are recalled essentially by
free association (this is similar to the model used by [7] to model semantically-related intrusions in
free recall). When λ approaches 0, we obtain a “pure episodic” model wherein words are recalled
exclusively from the study list. An intermediate value of λ is essential to simultaneously explaining
temporal contiguity and semantic effects in memory.

Finally, the context drifts according to

θr,t+1 ∼ N (hr,t, σI), (7)

where

hr,t = η2θr,t + η3 log(p̃r,t) + η4θs,n(wr,t). (8)

This is similar to how context drifts in the study phase, except that the context is additionally pushed
by the context that was present when the recalled word was studied. This is obtained mathematically
by defining n(wr,t) to be a mapping from a recalled word to the index of the same word at study. For
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Figure 2: Simulated and empirical recall data. Data replotted from [9]. (Left) Probability of first
recall curve. (Right) Conditional response probability curve.

example, if the recalled word is “cat” and cat was the sixth studied word then n(wr,t) = 6. If there
is a false recall, i.e., the subject recalls a word that was not studied, then θs,n(wr,t) is set to the zero
vector.

This generative model is depicted graphically in Figure 1, where Ω = {η1:4, σ, λ, ε} represents the
set of model parameters and Ξ is the set of hyperparameters.

To model inter-subject variability, we extend our model hierarchically, defining group-level prior
distributions from which subject-specific parameters are assumed to be drawn [6]. This approach
allows for inter-subject variability and, at the same time, it allows us to gain statistical strength from
the ensemble by coupling subjects in terms of higher-level hyperparameters. We choose our group
prior over subject i’s parameters to factorize as follows:

P (ηi1:4, σ
i, λi, εi) = P (ηi1)P (ηi2:4)P (σi)P (λi)P (εi). (9)

In more detail, the factors take on the following functional forms: ηi1 ∼ Beta(c, d), ηi2:4 ∼
Dir(χ), σi ∼ Exp(ν), λi ∼ Beta(a, b), εi ∼ Gamma(α1, α2). Except where mentioned otherwise,
we used the following hyperparameter values: a = b = c = d = 1, χ = [1, 1, 1], α1 = 1, α2 = 1.
For some model variants (described in Section 5.2) we set the parameters to a fixed value rather than
inferring them.

Here, we use the model to answer the following questions about behavior in free recall experiments:
(1) Do both semantic and temporal factors influence recall, and if so what are their relative contri-
butions; (2) What are the relevant dimensions of variation across subjects? In our model, semantic
and temporal factors exert their influence via the context vector, while variation across subjects is
expressed in the parameters drawn from the group prior. Thus, our goal in inference is to compute the
posterior distribution over the context trajectory and subject-specific parameters, given a sequence
of studied and recalled words. We can also use this posterior to make predictions about what words
will be recalled by a subject at each point during the recall phase. By comparing the predictive
performance of different model variants, we can examine what types of model assumptions (like the
balance between semantic and temporal factors) best capture human behavior.

4 Inference

We now describe an approximate inference algorithm for computing the posterior distribution. Letting
θ = {θs,0:N , θr,1:T ,Ω}, the posterior is:

P (θ|W) =
P (wr,1:T |θs,1:N , θr,1:T ,ws,1:N )P (θr,1:T |θs,1:N )P (θs,1:N |ws,1:N , θs,0)P (θs,0)P (Ω)

P (ws,1:N ,wr,1:T )
.

(10)

Because computing the posterior exactly is intractable (the denominator involves a high-dimensional
integral that cannot be solved exactly), we approximate it with a set of C samples using the particle
filter algorithm [4], which can be summarized as follows. At time t > 0:
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Figure 3: Factors contributing to context change during recall on a single list. (Left) Illustration of how
three successively recalled words influence context. Each column corresponds to a specific recalled
word (shown in the top row). The bars in each cell correspond to individual topics (specifically,
these are the top ten inferred topics at recall; the center legend shows the top five words associated
with each topic). Arrows schematically indicate the flow of influence between the components. The
context vector at recall (Middle Row) is updated by the posterior over topics given the recalled word
(Top Row) and also by retrieved study contexts (Bottom Row). (Right) Plot of the inferred context
trajectory at study and recall for a different list, in a 2-dimensional projection of the context space
obtained by principal components analysis.

1. Sample recall context θ(c)t using (7).

2. Compute weights v(c)t ∝ P
(
wr,t|θ(c)r,t

)
using (6).

3. Resample the particles according to their weights.

Using this sample-based approximation, the posterior is approximated as a sum of the delta functions
placed at the samples:

P (θ|W) ≈ 1

C

C∑
c=1

δ
(
θ − θ(c)

)
. (11)

5 Results

We evaluate our model in two ways. First, we generate data from the generative model and record
a number of common psychological measurements to assess to what extent the model reproduces
qualitative patterns of recall behavior. Second, we perform posterior inference and evaluate the
predictive performance of the model on a real dataset gathered by Sederberg and Norman.

5.1 Simulations

For the simulations, the following parameters were used: η1 = 0.2, η2 = 0.55, η3 = 0.05, σ =
0.00001, λ = 0.2, ε = 1.7. Note that these parameters have not been fit quantitatively to the data; here
we are simply trying to reproduce qualitative patterns. These values have been chosen heuristically
without a systematic search through the parameter space. The results are averaged over 400 random
study lists of 12 words each. In Figure 2, we compare our simulation results to data collected by [9].

Figure 2 (left) shows the probability of first recall (PFR) curve, which plots the probability of each
list position being the first recalled word. This curve illustrates how words in later positions are more
likely to be recalled first, a consequence (in our model) of initializing the recall context with the last
study context. Figure 2 (right) shows the lag conditional response probability (lag-CRP) curve, which
plots the conditional probability of recalling a word given the last recalled word as a function of the
lag (measured in terms of serial position) between the two. This curve demonstrates the temporal
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Figure 4: (Left) Box-plot of average predictive log-probability of recalled words under different
models. S: pure semantic model; E: pure episodic model. Green line indicates chance. See text for
more detailed descriptions of these models. (Right) Box-plot of inferred parameter values across
subjects.

contiguity effect observed in human recall behavior: the increased probability of recalling words that
were studied nearby in time to the last-recalled word. As in TCM, this effect is present in our model
because items studied close in time to one another have similar context vectors; as such, cuing with
contextual information from time t will facilitate recall of other items studied in temporal proximity
to time t.

5.2 Modeling psychological data

The psychological data modeled here are from a not-previously-published dataset collected by
Sederberg and Norman. 30 participants studied 8 lists of words for a delayed free-recall task. Each
list was composed of 15 common nouns, chosen at random and without replacement from one of 28
categories, such as Musical Instruments, Sports, or Four-footed Animals. After fitting LDA to the
TASA corpus [5], we ran the particle filter with 1000 particles on the Sederberg and Norman dataset.
Our main interest here is comparing our model (which we refer to as the semantic-episodic model)
against various special hyperparameter settings that correspond to alternative psychological accounts
of verbal memory. The models being compared include:

1. Pure semantic: defined by drawing words exclusively from the semantic path, with λ = 1.
This type of model has been used by [7] to examine semantic similarity effects in free recall.

2. Pure episodic: defined by drawing words exclusively from the episodic path, with λ = 0.

3. Semantic-episodic: a = b = 1 (uniform beta prior on λ). This corresponds to a model in
which words are drawn from a mixture of the episodic and semantic paths.

We also compare against a null (chance) model in which all words in the vocabulary have an equal
probability of being recalled.

As a metric of model comparison, we calculate the model’s predictive probability for the word
recalled at time t given words 1 to t− 1, for all t:

T∑
t=1

− log p(wr,t|wr,1:t−1, ws,1:N ). (12)

This metric is proportional to the accumulative prediction error [19], a variant of cross-validation
designed for time series models.

To assure ourselves that the particle filter we used does not suffer from weight degeneracy, we

also calculated the effective sample size, as recommended by [4]: ESS =
(∑C

c=1

(
v(c)
)2)−1

.
Conventionally, it is desirable that the effective sample size is at least half the number of particles.
This desideratum was satisfied for all the models we explored.
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Before we present the quantitative results, it is useful to examine some examples of inferred context
change and how it interacts with word recall. Figure 3 shows the different factors at work in
generating context change during recall on a single trial, illustrating how semantic inference and
retrieved episodic memories combine to drive context change. The legend showing the top words in
each topic illustrates how these topics appear to capture some of the semantic structure of the recalled
words. On the right of Figure 3, we show another representation of context change (from a different
trial), where the context trajectory is projected onto the first two principal components of the context
vector. We can see from this figure how recall involves reinstatement of studied contexts: Recalling a
word pulls the inferred context vector in the direction of the (inferred) contextual state associated
with that word at study.

Figure 4 (left) shows the average predictive log-probability of recalled words for the models described
above. Overall, the semantic-episodic model outperforms the pure episodic and pure semantic
models in predictive accuracy (superiority over the closest competitor, the pure episodic model, was
confirmed by a paired-sample t-test, with p < 0.002). To gain deeper insight into this pattern of
results, consider the behavior of the different “pure” models with respect to extra-list intrusions
vs. studied list items. The pure episodic model completely fails to predict extra-list intrusions,
because it restricts recall to the study list (i.e., it assigns zero predictive probability to extra-list
items). Conversely, the pure semantic model does a poor job of predicting recall of studied list items,
because it does not scope recall to the study list. Thus, each of these models is hobbled by crucial (but
complementary) shortcomings. The semantic-episodic model, by occupying an intermediate position
between these two extremes, is able to capture both the semantic and temporal structure in free recall.

Our second goal in inference was to examine individual differences in parameter fits. Figure 4
(right) shows box-plots of the different parameters. In some cases there is substantial variability
across subjects, such as for the similarity parameter ε. Another pattern to notice is that the values of
the episodic-semantic trade-off parameter λ tend to cluster close to 0 (the episodic extreme of the
spectrum), consistent with the fact that the pure episodic and semantic-episodic models are fairly
comparable in predictive accuracy. Future work will assess the extent to which these across-subject
differences in parameter fits reflect stable individual differences in memory functioning.

6 Discussion
We have presented here LDA-TCM, a probabilistic model of memory that integrates semantic and
episodic influences on recall behavior. By formalizing this model as a probabilistic graphical model,
we have provided a common language for developing and comparing more sophisticated variants. Our
simulation and empirical results show that LDA-TCM captures key aspects of the experimental data
and provides good accuracy at making item-by-item recall predictions. The source code for learning
and inference and the experimental datasets are available at www.cs.princeton.edu/˜blei.

There are a number of advantages to adopting a Bayesian approach to modeling free recall behavior.
First, it is easy to integrate more sophisticated semantic models such as hierarchical Dirichlet
processes [18]. Second, hierarchical model specification gives us the power to capture both common
and idiosyncratic behavioral patterns across subjects, thereby opening a window onto individual
differences in memory. Finally, this approach makes it possible to integrate other sources of data, such
as brain imaging data. In keeping with the graphical model formalism, we plan to augment LDA-TCM
with additional nodes representing variables measured with functional magnetic resonance imaging
(fMRI). Existing studies have used fMRI data to decode semantic states in the brain [12] and predict
recall behavior at the level of semantic categories [13]. Incorporating fMRI data into the model will
have several benefits: The fMRI data will serve as an additional constraint on the inference process,
thereby improving our ability to track subjects’ mental states during encoding and recall; fMRI will
give us a new way of validating the model – we will be able to measure the model’s ability to predict
both brain states and behavior; also, by examining the relationship between latent context states and
fMRI data, we will gain insight into how mental context is instantiated in the brain.
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